3.159 \(\int \frac{(2+3 x^2) (3+5 x^2+x^4)^{3/2}}{x} \, dx\)

Optimal. Leaf size=119 \[ \frac{1}{48} \left (18 x^2+61\right ) \left (x^4+5 x^2+3\right )^{3/2}+\frac{1}{128} \left (199-74 x^2\right ) \sqrt{x^4+5 x^2+3}+\frac{2401}{256} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-3 \sqrt{3} \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right ) \]

[Out]

((199 - 74*x^2)*Sqrt[3 + 5*x^2 + x^4])/128 + ((61 + 18*x^2)*(3 + 5*x^2 + x^4)^(3/2))/48 + (2401*ArcTanh[(5 + 2
*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/256 - 3*Sqrt[3]*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])]

________________________________________________________________________________________

Rubi [A]  time = 0.105921, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {1251, 814, 843, 621, 206, 724} \[ \frac{1}{48} \left (18 x^2+61\right ) \left (x^4+5 x^2+3\right )^{3/2}+\frac{1}{128} \left (199-74 x^2\right ) \sqrt{x^4+5 x^2+3}+\frac{2401}{256} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-3 \sqrt{3} \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x,x]

[Out]

((199 - 74*x^2)*Sqrt[3 + 5*x^2 + x^4])/128 + ((61 + 18*x^2)*(3 + 5*x^2 + x^4)^(3/2))/48 + (2401*ArcTanh[(5 + 2
*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/256 - 3*Sqrt[3]*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])]

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 814

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*(a + b*x + c*x^
2)^p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), x] - Dist[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a
 + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p -
 c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b*
d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0
] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])
) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(2+3 x) \left (3+5 x+x^2\right )^{3/2}}{x} \, dx,x,x^2\right )\\ &=\frac{1}{48} \left (61+18 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}-\frac{1}{16} \operatorname{Subst}\left (\int \frac{\left (-48+\frac{37 x}{2}\right ) \sqrt{3+5 x+x^2}}{x} \, dx,x,x^2\right )\\ &=\frac{1}{128} \left (199-74 x^2\right ) \sqrt{3+5 x^2+x^4}+\frac{1}{48} \left (61+18 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}+\frac{1}{64} \operatorname{Subst}\left (\int \frac{576+\frac{2401 x}{4}}{x \sqrt{3+5 x+x^2}} \, dx,x,x^2\right )\\ &=\frac{1}{128} \left (199-74 x^2\right ) \sqrt{3+5 x^2+x^4}+\frac{1}{48} \left (61+18 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}+9 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{3+5 x+x^2}} \, dx,x,x^2\right )+\frac{2401}{256} \operatorname{Subst}\left (\int \frac{1}{\sqrt{3+5 x+x^2}} \, dx,x,x^2\right )\\ &=\frac{1}{128} \left (199-74 x^2\right ) \sqrt{3+5 x^2+x^4}+\frac{1}{48} \left (61+18 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}-18 \operatorname{Subst}\left (\int \frac{1}{12-x^2} \, dx,x,\frac{6+5 x^2}{\sqrt{3+5 x^2+x^4}}\right )+\frac{2401}{128} \operatorname{Subst}\left (\int \frac{1}{4-x^2} \, dx,x,\frac{5+2 x^2}{\sqrt{3+5 x^2+x^4}}\right )\\ &=\frac{1}{128} \left (199-74 x^2\right ) \sqrt{3+5 x^2+x^4}+\frac{1}{48} \left (61+18 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}+\frac{2401}{256} \tanh ^{-1}\left (\frac{5+2 x^2}{2 \sqrt{3+5 x^2+x^4}}\right )-3 \sqrt{3} \tanh ^{-1}\left (\frac{6+5 x^2}{2 \sqrt{3} \sqrt{3+5 x^2+x^4}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0637445, size = 104, normalized size = 0.87 \[ \frac{1}{384} \sqrt{x^4+5 x^2+3} \left (144 x^6+1208 x^4+2650 x^2+2061\right )+\frac{2401}{256} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-3 \sqrt{3} \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x,x]

[Out]

(Sqrt[3 + 5*x^2 + x^4]*(2061 + 2650*x^2 + 1208*x^4 + 144*x^6))/384 + (2401*ArcTanh[(5 + 2*x^2)/(2*Sqrt[3 + 5*x
^2 + x^4])])/256 - 3*Sqrt[3]*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])]

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 117, normalized size = 1. \begin{align*}{\frac{3\,{x}^{6}}{8}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{151\,{x}^{4}}{48}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{1325\,{x}^{2}}{192}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{687}{128}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{2401}{256}\ln \left ({\frac{5}{2}}+{x}^{2}+\sqrt{{x}^{4}+5\,{x}^{2}+3} \right ) }-3\,{\it Artanh} \left ( 1/6\,{\frac{ \left ( 5\,{x}^{2}+6 \right ) \sqrt{3}}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}} \right ) \sqrt{3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x,x)

[Out]

3/8*x^6*(x^4+5*x^2+3)^(1/2)+151/48*x^4*(x^4+5*x^2+3)^(1/2)+1325/192*x^2*(x^4+5*x^2+3)^(1/2)+687/128*(x^4+5*x^2
+3)^(1/2)+2401/256*ln(5/2+x^2+(x^4+5*x^2+3)^(1/2))-3*arctanh(1/6*(5*x^2+6)*3^(1/2)/(x^4+5*x^2+3)^(1/2))*3^(1/2
)

________________________________________________________________________________________

Maxima [A]  time = 1.4835, size = 162, normalized size = 1.36 \begin{align*} \frac{3}{8} \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}} x^{2} - \frac{37}{64} \, \sqrt{x^{4} + 5 \, x^{2} + 3} x^{2} + \frac{61}{48} \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}} - 3 \, \sqrt{3} \log \left (\frac{2 \, \sqrt{3} \sqrt{x^{4} + 5 \, x^{2} + 3}}{x^{2}} + \frac{6}{x^{2}} + 5\right ) + \frac{199}{128} \, \sqrt{x^{4} + 5 \, x^{2} + 3} + \frac{2401}{256} \, \log \left (2 \, x^{2} + 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} + 5\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x,x, algorithm="maxima")

[Out]

3/8*(x^4 + 5*x^2 + 3)^(3/2)*x^2 - 37/64*sqrt(x^4 + 5*x^2 + 3)*x^2 + 61/48*(x^4 + 5*x^2 + 3)^(3/2) - 3*sqrt(3)*
log(2*sqrt(3)*sqrt(x^4 + 5*x^2 + 3)/x^2 + 6/x^2 + 5) + 199/128*sqrt(x^4 + 5*x^2 + 3) + 2401/256*log(2*x^2 + 2*
sqrt(x^4 + 5*x^2 + 3) + 5)

________________________________________________________________________________________

Fricas [A]  time = 1.29806, size = 300, normalized size = 2.52 \begin{align*} \frac{1}{384} \,{\left (144 \, x^{6} + 1208 \, x^{4} + 2650 \, x^{2} + 2061\right )} \sqrt{x^{4} + 5 \, x^{2} + 3} + 3 \, \sqrt{3} \log \left (\frac{25 \, x^{2} - 2 \, \sqrt{3}{\left (5 \, x^{2} + 6\right )} - 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3}{\left (5 \, \sqrt{3} - 6\right )} + 30}{x^{2}}\right ) - \frac{2401}{256} \, \log \left (-2 \, x^{2} + 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} - 5\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x,x, algorithm="fricas")

[Out]

1/384*(144*x^6 + 1208*x^4 + 2650*x^2 + 2061)*sqrt(x^4 + 5*x^2 + 3) + 3*sqrt(3)*log((25*x^2 - 2*sqrt(3)*(5*x^2
+ 6) - 2*sqrt(x^4 + 5*x^2 + 3)*(5*sqrt(3) - 6) + 30)/x^2) - 2401/256*log(-2*x^2 + 2*sqrt(x^4 + 5*x^2 + 3) - 5)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (3 x^{2} + 2\right ) \left (x^{4} + 5 x^{2} + 3\right )^{\frac{3}{2}}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5*x**2+3)**(3/2)/x,x)

[Out]

Integral((3*x**2 + 2)*(x**4 + 5*x**2 + 3)**(3/2)/x, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}{\left (3 \, x^{2} + 2\right )}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x,x, algorithm="giac")

[Out]

integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x, x)